Another day before the energy crisis?

What day is today? Someday in March 2010. Is there a crisis related to the supply, even the distribution of energy? I would say, hardly. No hard feelings, but we do not have to fear anything – for now. Really? Yes, well, prior to stepping forward into tomorrow let us review the situation for a moment, shall we? Energy makes sense, simply because it provides us with everything we need at anytime and sometimes even anywhere. It comforts us in many ways, starting from securing basic needs like shelter, food, light, mobility and, of course, communication. Certainly there are far more ways of spending energy on, in fact, countless paths can be taken to allay your hunger for it; we are now speaking of luxuries, whether in small, big or excessive quantities. So as long as you can secure whatever is achieved in energy demand you have the key to maintaining your life-style. Leaping forward from no-haves to haves is another key issue for a vast majority of people, longing for the same thing, maintaining whatever is obtained…

Energy comes in form of, mainly, electricity, fuel, and heat; fundamental things, yet so interlinked in today’s complex world. We do need them and will need them again and again. To sing a common theme, primary energy is always created foremost through energy production that strongly depends on fossil fuels or renewables. This then may imply a sort of limitation; are fossil fuels and renewables endless? And what is the corollary? And can this limitation tamper with the nowadays-perfect dance of business, commerce and our way of spending energy? Without any doubts, we are now entering a very contentious matter by raising such questions.

Let us remember what opinions the mavens of the last decades have expressed about centralized energy production: reliable and safe energy production in tandem with exploitation and distribution of secured fossil fuel provision. It is widely believed and constantly repeated that fossil fuels is not scarce. It is with so many promises that we began to feel like the boy who plugged the dyke with his fingers, only to find out leaks breaking out all around him. Abundance is everywhere and all the time.

Centralized trivia?

The lights of the dark ages were based on firewood, turf and petroleum. Over the years we stumbled upon coal, crude oil, natural gas and even harnessed the power of the atoms. Centralized energy production was the key to successfully provide electricity to households and industrial areas alike. We were ‘smothered” with life-long promises about cheap and reliable electricity and even heat to keep households warm. Finally, and for the moment, perhaps most mysteriously, we never question the fuse of energy production and commerce. We simply rely on it. Are there any restraints related to the given centralized trivia, which, in fact, works so perfectly fine until now? Very often the argument goes that centralized energy production stifles innovation, and, consequently, competition, which goes alongside the emergence of decentralized energy production. Nothing in the argument of securing energy production, nor in the argument that most people make when talking about the subject of doing business as usual, should draw into doubt this simple point; competition, and the necessity to integrate a variety of different energy production solutions provided by variety of players.

Idea sharing?

Idea sharing is a self-propelling mechanism, which gives room to even more ideas, driving competition forward, and in case of free markets, grants contracts to secure energy production. Does that imply centralized energy production, operated by a few companies, squelches idea sharing, even competition? Hard to tell, yet currently, less than 20 mega-companies, both state and commercial-based, dictate the terms by which energy flows in our world. By centralizing power over the Earth’s energy resources, the energy companies create the very conditions that reward economies of scale, and centralization of economic activity, in many other industries.

As for today, and with the market already divided into strikingly homogenously acting monopolists, who follow the idea of protecting the given monopoly position; will if they are rational, be willing to spend the net present value of their monopoly to defend it. They are more than ready to shoot – even back.

Never aim if you are not ready to shoot

Does decentralized energy production supply key arguments to aim and shoot? Is there really a difference in business approach compared to successfully acting monopolists? Imagine the following:

You are standing at the side of the street. Your flat is on fire. You are definitely annoyed and upset because to some extend you helped start the fire. Next to you is a bucket, filled with gasoline. Most apparently, gasoline will not put out the fire.

As you ponder the overall mess, someone else comes along. In a panic mood, he grabs the bucket. Before you have a chance to tell him to stop – or before he realizes just why he should stop – the bucket is in the air. The gasoline is about to hit the already blazing flat. And the fire that the gasoline will ignite is about to ignite everything around.

The given example indicates how difficult it is to overcome commonly accepted models in nowadays world. You may not solve the energy production and distribution problem by using the same kind of approach you started that set up the problem. It may do mischief because everything around will be affected too. A gentle shift, towards a leaner, cleaner energy production and distribution is the key; starting with natural gas, that can be simply provided from a variety of sources – fossil fuel based, such as conventional natural gas, on coal mine gas and flare gas; and renewables, such as biogas and even landfill gas.

Getting started by accretion in the natural gas market

Natural gas is widely accepted as fossil fuel – with the lowest impact on greenhouse gas emissions if burned or converted to CO2. Oil produces one-third more CO2 than natural gas equivalent unit of energy produced, while coal produces two-third more CO2.  More importantly, it is fast becoming the fuel of choice for the generation of electricity. It is also increasingly being used as a fuel for transportation, which, in fact, is crucial for tomorrow’s markets. New technological breakthroughs in converting gas-to-liquids have reduced costs and brought liquids gas to a range that is competitive with traditional commodities, such as gasoline and diesel.  Without any doubt, natural gas is one of the key elements to help set up a decentralized energy production and distribution scheme – speaking globally, but acting locally.

Small-scale LMG contribution

As already pointed out in the article “Small is beautiful – LNG your life” LNG and its derivatives, such as LMG (Liquefied Methane Gas) and even LBG (Liquefied Biogas), might be the missing link between traditional commodities, i.e. coal, uranium, natural gas. Do we really need liquefied methane gas produced in small-scale quantities? Is not methane itself considered a traditional commodity?

The very beauty of small-scale LMG applications is the rapid response time between idea sharing and turn-key ready plant delivery. Response time is crucial in businesses where energy commodity prizes are becoming even more volatile in the upcoming future as today. Everything turns to be uncertain, yet energy production and distribution MUST be secured, but not by using old business models. Moreover, LMG is a respected way of energy storage and easy to transport as it will use an existing infrastructure. Small-scale LMG applications follow the philosophy of mainly off-the-shelf-components, which is an intrinsic part of doing business in the future due to small prices and increased competition. More than that, the utopia of LMG is inherently plausible because LMG is the fuel-of-all-trades, the general-purpose-fuel: it can be produced in many ways but stored and distributed in only one.

How many days left until the energy crisis?

We have pulled down the stars to our will, one may argue, why not secure energy supply, production and distribution on a global scale without incurring any crisis?

What day will be tomorrow? Someday after dawn. So will there be a crisis related to the supply, even the distribution of energy? Easy to tell, if you use the missing link between traditional and renewable energies.

Was tankt man eigentlich in der Zukunft?

Kraftstoff(e) der Zukunft? Brauchen wir nicht, wir haben doch Benzin und Diesel. So  so ähnlich könnte ein Gespräch an deutschen Tankstellen ablaufen. Stellt man die Frage in anderen Ländern, wird die Antwort etwas varieren, aber grundsätzlich wird die Notwendigkeit von Benzin und Diesel nicht in Frage gestellt.

Eine Auflistung von etablierten Kraftstoffe bis hin zu Kraftstoffen der 3. Generation und jensseits davon  soll Abhilfe schaffen, um der Zukunft der Kraftstoffe etwas mehr Perspektive zu verschaffen – weg von herkömmlichen Kraftstoffen.

Ottokraftstoffe (herkömmlich und bis heute, 2009, am weitesten verbreitet)

  • Dichte: 0,71 bis 0,78 kg/l
  • Brennwert: 42,7 bis 43,5 MJ/kg

Wichtig ist ebenfalls die Oktanzahl, an der sich die Klopffestigkeit ablesen läßt. Je höher sie ist, desto geringer die Neigung zur Selbstentzündung.

Dieselkraftstoffe (herkömmlich und bis heute, 2009, am weitesten verbreitet)

  • Dichte: 0,815 bis 0.85 kg/l
  • Brennwert: 42,5 MJ/kg

Entscheidend ist ebenfalls die Cetanzahl, welche die Zündfähigkeit beschreibt.

Erdgas, Compressed Natural Gas oder auch CNG (Alternativ, aber herkömmlich)

  • CNG ist auf 200 bar komprimiertes Erdgas
  • 1 kg CNG entspricht in etwa 1,5 l Benzin bzw. 1,3 l Diesel
  • Dichte Erdgas: 0,79  bis 0,83 kg/m3
  • Brennwert Erdgas: 48,5 MJ/kg

In 2009 sind offiziel über 700 Erdgastankstellen in Deutschland registriert; ca. 40.000 bivalente Erdgasfahrzeuge sind auf deutschen Strassen unterwegs.

Autogas, Liquefied Petroleum Gas oder auch LPG (Alternativ, aber herkömmlich)

  • LPG ist ein Gemisch, bestehend aus Propan und Butan; ein Nebenprodukt der Mineralölförderindustrie
  • Dichte: ca. 0,56 kg/m3
  • Brennwert: 49 MJ/kg

In 2009 sind über 40.000 LPG Fahrzeuge in Deutschland unterwegs.

Diese herkömmlichen Kraftstoffe sind zunehmend der Konkurenz von Biokraftstoffe der ersten-, zweiten-, ab 2010 ebenfalls der dritten Generation ausgesetzt. Biokraftstoffe der 1. Generation sind in 2009 etablierte Kraftstoffe, deren Ausbreitung vor allem in Südamerika und den USA zu verzeichnen ist.

Biodiesel ist kein wirklicher Biokraftstoff der 1. Generation, sondern Rapsmethylester (RME) und – bis heute – der einzig genormte Biokraftstoff. Er wird vorwiegend in Deutschland aus Raps gewonnen.

  • Dichte: 0,88 kg/l
  • Brennwert: 37,1 MJ/kg

Zwischen 2000 und 2009 stieg die Biodieselerzeugung in Deutschland von ca. 0.3 Millionen auf über 5 Millionen Tonnen an.

Bioethanol der 1. Generation wird vorwiegend in Deutschland herkömmlichen Ottokraftstoffen beigemischt. Benzin der Sorte E85 besteht zu 85% aus Ethanol und 15% aus Benzin. Die jährliche Produktion von Bioethanol in Deutschland in 2008 betrug ca. 0,5 Millionen Tonnen. und wird sich bis 2014 auf ca. 1,1 Millonen Tonnen stabilisieren; die Herstellung erfolgt ausschließlich aus Getreide und Zuckerrüben.  In den USA, Schweden und vor allem in Brasilien ist Bioethanol weit verbreitet. Die brasilianische Herstllung, vorwiegend aus Zuckerrohr, ist um fast die Hälfte billiger im Vergleich zu der deutschen Produktion.

Biogas der 1. Generation wird aus aufbereiteten Erdgas gewonnen, welches auf 200 bar komprimiert wird. Entscheidener Vorteil gegenüber Biodiesel ist der höhere Energieertrag, 178 GJ/ha im Vergleich zu 51 GJ/ha. Dichten und Brennwerte von Biogas entsprechen den Werten von Erdgas.

Biokraftstoffe der 2. Generation sind eine konsequente Weiterentwicklung von Fischer-Tropsch- als auch Pyroloyseverfahren, mit dem konsquenten Ziel durch großtechnische Anlagen Rohstoffabhängigkeiten zu minimieren. Kommerzielle Anlagen werden sich aber bis 2010 nicht etablieren.

Biomass-to-Liquid (BtL) werden Biokraftstoffe der 2. Generation bezeichnet, um z.B. Dieselkrafstoffe aus Biomasse herzustellen. Die Firma Choren aus Freiberg/Sachsen hat ein Verfahren entwicklelt, um Biomasse (Holz, Stroh, Reststoffe, etc.) in einem mehrstufigen Prozess in ein Synthesegas zu überführen, welches dann in einem weiterentwickeltenFischer-Tropsch-Verfahren zu hochwertigen Biokraftstoffen umgewandelt wird. Entscheidende Vorteile sind dabei:

  • hohe Energieerträge, bis zu 140 GJ/ha
  • gute CO2-Bilanz
  • breite Rohstoffbasis
  • hohe Kraftstoffqualität, Dichte: 0,76 bis 0,79 kg/l sowie ein Brennwert von ca. 44 MJ/kg

Die erste Großversuchsanlage mit einer Produktionskapazität von 200.000 t/a wird Ende 2009, Anfang 2010 in Freiberg anlaufen.

BtL-Pyrolyseverfahren sollen ebenfalls Biokraftstoffe der 2. Generation erzeugen.Bei der Flash-Pyrolyse wird Biomasse unter Sauerstoffausschluss sehr schnell erhitztz (ca. 480°C) und das entstehende Pyrolyseprodukt schnell abgekühlt und kondensiert zu einer rötlich-braunen Flüssigkeit (Slurry) mit etwa der Hälfte des Heizwertes von konventionellen Heizöls. Das Forschungszentrum Karlsruhe ist bis 2010 mit dem Aufbau und Weiterführung einer Pilotanlage beschäftigt.

Bioethanol der 2. Generation wird aus Alkohol aus Lignozellulose (Stroh, Holz, Rinde, landwirtschaftliche Abfälle) in mehrstufigen thermischen, chemischen und enzymatischen Verfahren in Glucose aufgebrochen und fermentiert. Forschungsschwerpunkte liegen vor allem in Kanada, Schweden und den USA.

Biokrafstoffe der 3. Generation auf der Basis von Methan werden sich ab 2010 zunehmend etablieren. Ihre Herstellung erfolgt aus Deponiegas und vor allem Biogas, welche gereinigt und anschließend verflüssigt werden zu Liquefied Methane Gas (LMG), respektive zu Liquefied Biogas (LBG). Vorteile gegenüber Biogas(e) der 1. Generation, die als CNG – bis 200 bar komprimiert – bereits Anwendung finden, sind:

  • 2,3-fache höhere Energiedichte
  • höhere Wirtschaftlichkeit, ab Entfernungen  über 100 km
  • Verwendung als Energiespeicher

Biokraftstoffe der übernächsten Generation werden sich gegen krafstofflose Fahrzeuge behaupten müssen. Elektroautos, heute noch ein Nischenprodukt, werden zunehmend wirtschaftlich attraktiv. Biokraftstoffe werden ab nicht verschwinden, ihre Erzeugung wird generationsübergreifend sein; dazukommen werden aber Wasserstoff – für die Anwendung von Brennstoffzellen und Algen – für die Erzeugung von Bioethanol, als auch Biogas. Was werden wir in der Zukunft tanken? Stellt man diese Frage im Jahre 2020, werden die Antworten vielfälltig sein.

Big European LNG demand meets small solutions?

The script is easily set up and inherently true. In 2020, Europe must import 4 out of 5 m³ natural gas – a big demand. In the meantime, natural gas imports by existing pipelines already rises to over 300 billion m³ in 2009. Russia distributes by far, almost 50%, Norway 30% natural gas to Germany. At the moment, natural gas production, despite echoing controversial arguments, is not for scarce and neither in 2020; but the existing distribution infrastructure is not prepared for rising demands after 2020. Pipeline projects such as (1) Baltic sea pipeline (North stream), (2) South East Europe pipeline (South stream), and (3) Nabucco pipeline are under construction or close to call. Even smaller projects, i.e. Galsi (Algeria-Italy) and Medaz (Algeria-Spain) may step in.

Considering the Russian-Ukrainian natural gas dispute in 2008, which, in fact, climaxed in a total delivery stop of Russian gas to Western Europe for several days, LNG may help to fill the gap and beyond. Despite its global impact and importance and with yearly growth rates of up to almost 10%, comparing to 2% natural gas pipeline growth rate on a yearly basis, LNG imports verifies significantly in Europe. In 2008, virtually none LNG was directly imported in Germany (of course, due to lacking LNG receiving terminals). In France, LNG imports cover almost 30%, in Spain over 70% of all natural gas consumption. Even Great Britain, recently re-opening and expanding its receiving capacities, hits the magical, starting, 1% marker. These figures indicate that LNG play and will play a pivotal role in securing natural gas supply widely over Western Europe, except Germany? Not quite; in times of international, border-crossing, pipeline infrastructures, Germany’s natural gas companies purchase free slots (regasification capacities) on existing LNG receiving terminals all over Europe, i.e. Huelva or Barcelona in Spain, in Italy, Croatia or even Great Britain. Without the restraint of lacking receiving terminals in Germany, LNG will be bought, stored for a certain time, regasified and distributed – where demand is crucial.

Worldwide some 20 base-load LNG plants in 16 countries can be identified in 2008; roughly 60 LNG receiving terminals, with the majority in Japan, define the lower end of the LNG value chain. Its if firmly believed that in 2020 almost 30% of Western Europe’s natural gas consumption will be supplied by LNG. With the existing natural gas infrastructure and strategy, which is strikingly homogeneous divided by a small group of companies, small, locally produced LNG/LMG/LBG solutions may find a hard time to compete.

Rückenwind für flüssiges Biogas im Kraftstoffeinsatz?

Durch die Neuregelung der Gasnetzzugangsverordnung (2008) durch die deutsche Bundesregierung müssen Biogasanlagen vorwiegend an das Gasnetz angeschlossen werden. Dabei gilt die Verpflichtung, dass Anlagenbetreiber und Netzbetreiber jeweils die Hälfte der Kosten für den Netzanschluss zu tragen habe.  Das Einspeisepotential bis zum 2020 wird mit  6 Mrd. m³ Biogas angegeben; bis 2030 sollen es fast 10 Mrd. m³ Biogas sein – fast 10% des heutigen jährlichen Verbrauchs an importierten Erdgases würde damit gedeckt werden.  Der hauptsächliche Einsatz des eingespeissten, aufbereiteten, Biogases wird dabei im Bereich Kraft-Wärme-Kopplung sein.  Dies könnte aber ebenfalls für den nötigen Rückenwind sorgen, um flüssiges Biogas als Kraftstoffoption vorzustellen und anzubieten.

Small is beautiful – LNG your Life?

Is there a missing link between traditional commodities, i.e. coal, uranium, natural gas, even their business models and cleantech (short for clean technology) companies, providing electricity and industrial required process energy? Do we really need liquefied methane gas? Can it be the missing link? Is not methane itself considered a traditional commodity? Yes, no and maybe.

Originally, starting in the 1960ies, liquefied methane gas, or more precisely Liquefied Natural Gas (LNG), is related to the process of liquefying natural gas, found mostly at remote areas. The gases will be pretreated, processed, cooled and stored as LNG; awaiting to be shipped to energy hungry markets, i.e. the US, Europe and Asia. Big piles of money and efforts are established; equipments are designed and moved to set up base-load LNG plants and everything related to it.

Since the 1990ies, liquefaction technologies retrieved from base-load LNG plants were used and down-sized to carve a new market niche: Small-scale LNG. Intentionally, Norway, among others, was pioneering the set-up of several small-scale LNG plants, driven by several decision, i.e. remotely placed industrial and private customers, introduction of leaner, less CO2 emitting, technologies compared to heavy oil and, of course, diversifying the existing energy market.

Since the new millennium, size matters even more and small-scale LNG plant became even smaller; now called mini-LNG, creating and carving new markets with a plethora of possibilities and difficulties to deal with. New gas sources, i.e. biogas, landfill gas, even coal bed methane gas became interesting for liquefaction and distribution. Shortcuts like liquefied biogas (LBG) and liquefied methane gas (LMG) were introduced and became pending slogans.

If not considering LMG produced from small-scale and mini-LNG plants seriously at the present, the future may show one thing: The cruel comes and goes, like cities and thrones and power, leaving their ruins behind. They had no permanence. Who is the cruel, who is to blame? Certainly, the cruel is considered to be rather ignorant than cruel, driven by blindness towards a more decentralized energy provision including many players, even teams, arbitrators and, of course, different play grounds, i.e. solar, wind, geothermal energy, water and biomass. The latter contributes to produces biogas, which, in fact, will be processed to LNG/LBG/LMG – the missing link. Are you ready to LNG your life and the life of others?

Small is beautitul – LNG to power the Internet?

Why LNG?

From today’s perspective, the world need 50% less CO2 emissions until 2050, if the CO2 concentration of 450 ppm (parts per million) in the atmosphere shall be kept below this threshold. Conservatively speaking, between 2008 and 2012 the amount of global Internet traffic is going to be quadrupled. Energy, particularly electricity is the overall key to provide constant and reliable access to the world’s information grid – the Internet. As information service providers, powering the Internet by their massive server farms, electricity reliability is crucial.

Many self-commitments had been given to reduce carbon emissions. From tomorrow’s perspective, innovative information services need innovative yet reliable electricity supply, easing the need for atomic or even coal-fired power plants. A sound combination of renewable energies may be the answer. Intermediately speaking, low-value-gas-to-LNG application might help to step forward into this direction. LNG, short for Liquified Natural Gas, is being produced by cooling down gases (natural gas, biogas, landfill gas and even flare gas) to -163 deg C, where is take only 1/600th of its original volume at atmospheric pressure. From today’s perspective, only base-load LNG production facilities, being provided by sub sea natural gas sources, are of interest, simple because the conventional LNG value chain involves upstream and downstream players with long-time commitments, both economically and technologically.

Stepping down in size, small-scale LNG infrastructures may help to decentralize energy provision, reduce substantially carbon emissions, and outline the way to a complex renewable energy system. Also, they inherent a substantial innovation potential due to the fact that a substantial amount of players will be involved. To access the Internet in the future we need innovative energy provision.

Situation Information Technology

Information technology providers have a tremendous interest in cheap, but yet reliable electricity to provide energy to server farms, powering the internet, production lines, providing the necessary tools for surfing the grid, or anything else related to our information driven society. As seen today, supporting renewable energies, e.g. solar industry, seems very attractive, simple because our sun does not write any energy bills.

The core idea is always the same: Electricity, provided by renewable energies, shall be cheaper than electricity produced from coal power plants, running constantly on base load. They produce tremendous amounts of CO2, being released into the atmosphere; simply because commodities which inherent a lot of carbon produce a lot of CO2. Why not investing into CO2 catching technologies, but common sense tells a different story. What about atomic power plants? Point taken, but due to the sheer scope, delivery time and investment necessary they may simply scare off people, companies and investors. People want something new, small and lean, compared to the existing massive infrastructure related to coal and atomic power.

Nuclear Lazarus?

Nuclear power already, in 2008, provides almost 20% of the world’s electricity production, with no CO2 while running. Although it is believed that its share will fall – to just 10% of production within the next decade. In discussing nuclear power as a means of creating electricity, it is important to keep in mind that nuclear power plants are nothing more than very complicated and potentially hazardous machines for boiling water, which creates the steam used to drive turbines. As with coal, nuclear power stations are very large in terms of space and electricity production – up to 2 GW. With a starting price of 2 billion USD apiece they are expensive, too.

Because they are large, and many factors relating to safety must be considered, the permitting process for a nuclear power plant can take up to a decade. Lead-times, from planning to commissioning, of up to 17 years are required, prior to first production of electricity. Worldwide, at the moment, 34 projects are under construction with 12 being planned and constructed for over 20 years. In terms of new projects, 6 plants in China, 6 in India and 2 in Europe can be identified. These projects and with respect to the average lead-time, electricity production eventually will start in 2025.

According to the Intergovernmental Panel on Climate Change (IPCC), climate change needs to be stopped within the next 15 years to slow down any further increase in earth’s temperature on a global scale. In economic-speech, with a 17-year gestation period before any power is generated, and even longer before any return on investment is seen, nuclear power is nothing for impatient investors. These factors, as much as the concern about safety, disposal of waste and bombs, whenever nuclear power is mentioned, are leading to the only argument in favour of nuclear power: zero CO2 emissions.

While running on constant base-load, no emissions will be noted from nuclear power plants, but in general, CO2 will be emitted upon the production of uranium or any other nuclear substitute being used as fuel. Within the nuclear fuel chain, between 30 to 120 g CO2 per produced kWh electricity will be emitted. By comparison, natural gas power plants emit almost 150 g CO2 per kWh.

The majority of new nuclear power plants are being built in the developing world, where a less tight-laced bureaucracy and greater central control make things easier. China is planning to commission two nuclear power plants per year for the next twenty years, which from a global perspective, speaking CO2 emission reduction, is highly desirable, for 80% of China’s power now comes from coal, which in term emits more than 300 g CO2 per kWh. Providing the uranium necessary to fuel these reactors will be a challenge, for world uranium reserves are not large, and at the moment around a quarter of the world’s demand is being met by reprocessing nuclear weapons. With uranium on scarce, CO2 emission released within the nuclear fuel chain will increase. The very essence of nuclear power as a low emission technology will be compromised.

Yes, We Can

The change towards new, leaner technologies is giving a new boost for investors. Today, a turnover of roughly 1000 billion USD is made referring to sustainable energy provision, soaring to 2000 billion USD in 2020. In 2007, companies obtained 2 billion USD from investors in order to spin their ideas in to valuable products. As we undergo this radical shift, we should re-examine the scope of energy security with respect to information technology. Between 2008 and 2012 the amount of global Internet traffic is going to be quadrupled. Huge amount of data needs to be stored in real-time and being accessible at any time. To store this huge amount of data the world is relying on servers, which, in fact, rely on electricity.

Since the dawn of the Internet in the mid-1990s we cannot imagine how we ever lived without it. Statistics indicate that, in 2007, 1.3 billion people were online worldwide, almost 3.5 times as much as in 2000. Two out of five Internet users are located in Asia and the number is strikingly increasing. In 2007, more than 270 million computers had been sold; an increase of 13% compared to 2006. More than 70 million computers were sold in Asia. Behind every search, direct deposit, YouTube request and rant on a blog is a data center, or server farm crammed with machines called servers and, behind them, a power plant.

To run these servers, located at special server farms, electrical energy and backup systems are required to guarantee non-disruptive service at any time to anybody. Globally, in 2007, an estimated 2 percent of worldwide carbon emissions come from producing the electricity that powers the worldwide server farms, or about 300 million tons CO2 a year.

As the amount of users and content is increasing, the amount of servers is increasing by a yearly rate of 8%. Due to the development of the Internet, most server farms are located in the US and in Europe. With almost 70 million users from Asia in 2007 and an estimated population of almost 3 billion people, future server farms will and must be located in Asia. As mentioned before, Asia is investing majorly in coal and atomic power plants to cope their steadily increasing energy consumption.

Key factors that are known to influence the set-up of server farms until today are:

  1. The availability of large volumes of cheap electricity to power the data centers.
  2. Today and future commitments to carbon neutrality, which has sharpened its focus on renewable power sources such as wind, hydro, and solar power.
  3. The presence of a large supply of water to support the chillers and water towers used to cool the data centers.
  4. Distance to other data centers. They are in constant need of lightning-fast response time for their searches, and prizes fast connections between the data centers, speaking of low latency in connections between facilities.
  5. Tax incentives.

In response to the above mentioned key factors some may argue that:

  1. There might be no more cheap electricity as being provided today from existing atomic power plants, existing coal fired power plants and common natural gas power plants – electricity prices will certainly increase in the nearby future.
  2. Commitments to carbon neutrality could be a perfect match with low-value-gas-to-LNG applications. The produced LNG will be transported and regasified to power plants, which may provide server farms with electricity.
  3. Partly, LNG could provide cooling duty for the server farms upon regasifying, taken from the LNG.
  4. Expanding server farms may create new markets and increase the need of diverse energy supplies.
  5. Most pressing, as CO2 trading activities become mandatory in the nearby future and hence any mitigation of CO2 is driving future energy provisions.

Each server, powering the Internet, at the server farms produces up to 1 kW of heat by consuming up to 1 kW of electricity. This in terms implies substantial cooling by air-coolers or water coolers, supplied by nearby rivers. It gets hot enough that for every dollar spent to power a typical server, another dollar is spent to keep it cool.

Flipping The Coin

In the future, all information technology providers will struggle to find adequate supply of reliable electricity, if not supporting nuclear power or power produces from coal. As for the LNG value chain; today, gas pre-treatment and energy efficient liquefaction technologies, distribution, storage and regasification of LNG at the satellite stations with an adjacent power plant are state-of-the-art. Flipping the coin – decision making – may be an option; and with the coin already in the air, speculations will certainly rise which side to find atop. Doing business as usual or small is beautiful, towards a more diverse and leaner energy provision to power the Internet of the future?

Further Readings

The energy nightmare of web server farms (by Jane Anne Morris)

Small is beautiful – LNG auf der Strasse?

Können Sie sich ein Leben mit LNG (Liquefied Natural Gas), LBG (Liquefied Biogas) oder LMG (Liquefied Methane Gas) in Deutschland, der Schweiz, Österreich oder wahlweise Europa vorstellen? Nein, ich auch nicht, noch nicht. Was versteckt sich eigentlich hinter diesen Abkürzungen? Beim Verflüssigungsprozess werden methanhaltige Gase – Erdgas, Biogas und Deponiegas – auf bis zu -163°C heruntergekühlt und können bei Atmosphärendruck oder leicht darüber gelagert werden – je nach Anwendung. Szenarien gibt es viele, aber konkret zeigt sich, dass die Biogas/Deponiegas Verflüssigungskette umsetzbar wäre.

Weiter nachgefragt lässt sich feststellen, dass LBG/LMG im Fahrzeugbereich einsetzbar ist. Erste Beispiele aus England und den USA zeigen, daß LMG, aus Deponiegasen im Transportbereich von den Kunden angenommen wird. Um soweit zu kommen, bedarf es Technologien, um diese Gase von CO2, Schwefel, Wasser, Stickstoff, Sauerstoff, und vielen anderen zu reinigen, zu komprimieren, zu verflüssigen und dann vor Ort zu lagern. Dabei muss Elektroenergie aufgewendet werden, im Bereich von 0.7 bis 1.5 kWh/kg produziertes LBG/LMG für die gesamte Anlage. Ein m³ LGB/LMG im Lagertank entspricht dabei 600 Nm³ (Normalkubikmeter, bezogen auf 1 bar und 0°C) gereinigtes Gas mit einem mittleren Brennwert von rund 10 kWh/Nm³ .

Der Transport von LBG/LMG erfolgt in Kältetanks auf LKWs, welche bis zu 50 m³ LBG/LMG (äquivalent zu rund 30 000 Nm³ Gas) aufnehmen können. Die Argumente für den Umstieg von CNG (Compressed Natural Gas) auf LBG/LMG kommen jetzt in Spiel. Ab einer Reichweite von 100 km spricht die hohe Energiedichte für den Einsatz von LBG/LMG.

Ebenfalls kann an einer existierenden CNG Tankstelle, aus LMG mit niedrigem Elektroenergieaufwand CNG, oder, um den richtigen Terminus zu bewahren CMG (Compressed Methane Gas), hergestellt und vertrieben werden. Fahrzeuge, vor allem im Schwerlasttransport sind vorzugsweise als Zielgruppe angesehen, wenn es um den direkten Einsatz von LBG/LMG geht.

Die oben angeführten Beispiele aus England und den USA zeigen den möglichen Weg in die richtige Richtung, um aus Abfällen Energie für den Transportsektor zu erzeugen. Projekte dieser Größenordnung werden auch als Mini LNG Anlagen bezeichnet. Der Vorbehandlungsprozess kann abhängig vom Anwendungsfall als Kombination aus drucklosen Aminwäschen sowie nachgeschalteten Adsorptionskolonnen, oder als reine Adsorptionanlage ausgelegt werden. Die Reinheitsparameter vor der Verflüssigung sind dabei strikt einzuhalten, um ein Zufrieren der Wärmewechsler (vorwiegend durch CO2 und Wasser) und Korrosionsprobleme zu vermeiden. Die vorgeschriebenen Maximalwerte für nicht erwünschte Gasbestandteile für LBG respektive LMG sind dabei:

  • CO2: 50 ppm (0.005 Mol-%)
  • Schwefel: 4 ppm
  • Wasser: 1 ppm (0.0001 Mol-%)
  • Stickstoff: 1 Mol-%
  • Sauerstoff: 1 Mol-%

Anfallende Restgase aus den Regenerierungsprozessen werden zur Deckung des Energiebedarfs der Anlage verstromt. Verflüssigungsanlagen der Größenordnung bis 15 Tonnen LBG/LMG pro Tag (äquivalent zu rund 22 000 Nm³ gereinigtes Gas pro Tag) basiert auf einem Gemisch von Kohlenwasserstoffen sowie Stickstoff (als Kältmemittel), welches fortwährend komprimiert, in Zweiphasenströme aufgetrennt, entspannt und verdampft wird.

Innerhalb dieser Parameter wird das Kühlmittel über eine Anordnung von gewöhnlichen Plattenwärmewechslern genutzt, um das gereinigte Gas auf bis zu -163°C herunterzukühlen. Gasseitig sind dabei Drücke von bis zu 30 bar notwendig. Das Novum der Konzeptes der Mini LNG Anlagen muss daher der konsequente Einsatz von Standardkomponenten bestehen, um die Investitionskosten und Anlagenlieferzeiten niedrig zu halten.

Können Sie sich vorstellen, mit LBG/LMG aus Biogas oder Abfällen ihr Auto, LKW oder Bus anzutreiben? Ja, ich auch, nur noch nicht jetzt.